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Forecasting is an important part of a business
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Full Year 2019 Guidance:

e Total MAUs: 245-265 million, up 18-28% Y/Y

e Total Premium Subscribers: 117-127 million, up 21-32% Y/Y
e Total Revenue: €6.35-€6.8 billion, up 21-29% Y/Y

e Gross Margin: 22.0-25.0%

e Operating Profit/Loss: €(180)-(€340) million
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https://investors.spotify.com/financials/default.aspx
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Forecasting is an important part of a business
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Full Year 2019 Guiiy Monthly Active User

Total MAUSs: 245-265 million, up 18-28% Y/Y
Total Premium Subscribers: 117-127 million, up 21-32% Y/Y
Total Revenue: €6.35-€6.8 billion, up 21-29% Y/Y

Gross Margin: 22.0-25.0%

Operating Profit/Loss: €(180)-(€340) million
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Happens at the end of each Uses time-series data

Forecast ahead Produces



All data and graphs shown in this talk are
generated by random processes.

No Spotify data is used.
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Forecasting MAU for existing markets

Generally speaking, a market is considered “existing” if Spotify launched there at least one year ago



Prophet is a time-series forecasting
package

Prophet explained with gifs Detailed documentation of prophet here.

Available for Python and R
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https://twitter.com/seanjtaylor/status/1123278380369973248
https://facebook.github.io/prophet/docs/quick_start.html
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Prophet is highly optimizable

Prophet has many parameters that can be optimized via grid search to
produce an even more accurate forecast

Detailed documentation of prophet here
Prophet explained with gifs



https://facebook.github.io/prophet/docs/quick_start.html
https://twitter.com/seanjtaylor/status/1123278380369973248

We want a more granular model

Forecasting on a lower level than MAU allows us to better understand the
underlying drivers of users growth.

e Are we retaining users better?
e Are we activating users better?
e Are we reactivating users better?



We divide MAU into cohorts based on date

Let’s consider MAU that became MAU by activating upon registration



We divide MAU into cohorts based on date

Let’s consider MAU that became MAU by activating upon registration

For each day we track the number of such activated registrations
We use prophet to forecast that number in the future



We divide MAU into cohorts based on date

Let’s consider MAU that became MAU by activating upon registration

For each day we track the number of such activated registrations
We use prophet to forecast that number in the future

We track how many of that original cohort remain MAU on the following days

Note that this number can only decrease. If a user from that cohort churns and becomes MAU in a future date, that user will be
counted as a reactivated user of that future date.



This is what retention curves can look like
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We normalize & study the retention curves
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We calculate the average retention curve

o
o]

o
o

Retention
o
~

o
N

0.0 b
0 20 40 60 80 100 120 140 160

Number of Periods

Artificially generated
data



We calculate the average retention curve
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We calculate the average retention curve
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We extrapolate the historical curves
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Prophet forecasts future cohort sizes
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We apply the average retention curve
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We apply the average retention curve
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We repeat the process for reactivated users
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Pros & Cons of the cohort model

O More granular forecast that produces a bottoms up forecast

Better understanding of driving factors

‘ e ' Complex data engineering
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Forecasting in a fast-changing world



2.1

How we handle irregularities



Imagine that we undergo a step change

120000
100000
Maybe a marketing
80000 campaign, maybe a new
product.
60000
40000
20000
0 " q " q " q " \ "
Q Q Q Q Q Q Q Q Q
T BT T T @ e e T

Artificially generated
data



Imagine that we undergo a step change

120000
100000
Maybe a marketing
80000 campaign, maybe a new
product.
60000
40000
20000
0 vy z 3" 1 Y q 39 \ 39
Q Q Q Q Q Q Q Q Q
fLQ\‘b fLQ\‘b 10‘\‘,‘ 10\‘1 10‘\'% 10\‘% 10'\9 10\9 101’0

Artificially generated
data



Imagine that we undergo a step change
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Prophet will pick up this “trend”
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We can make the step change go away
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2.2

Additional robustness tests



We compare against other models

Once we have the first version of our forecast, we compare it against other models,
such as prophet, holt-winters and even special forecasts that the local teams have
given us.

We adjust as needed.

140000

== Model 1 140000

120000 === Model 2
== Actual

120000

100000 100000

80000 80000

60000 60000

40000 40000

20000 20000

10\’1 o

q
N
20 20

Y
0

o oY
B 8

Artificially generated

A o e



We check against the previous forecast

We aim to understand the differences between the current and previous forecast.

We check actual data and communicate with local market leaders
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Learnings

1. Explore weighing recent observations heavier

1. Be aware of the environment you’re operating in

a. Competitor moves
b. Big marketing campaigns
c. New markets, new products

1. Compare multiple models

1. Find ways to QA all results with experts & stakeholders
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Future Work



Future work

.{(\' We use prophet with its default parameters and its performing very well, but
@ we want to explore grid search.

Use seasonal survival curves for predicting the retention of future cohorts

C Better exploration and alerting on our forecast.
Anomaly detection on the cohort level as well as on the country level.



Time series

data file Best available
-

forecast

-
OR SQL query




Best available forecast

Across many train/test splits: sliding and expanding sizes
Across many possible models: Holt Winters, Prophet, custom internal

Across many possible parameters: grid search

Further external reading:
Uber's Omphalos
Uber Tech Day, ML and forecasting at Uber



https://eng.uber.com/omphalos/
https://www.youtube.com/watch?v=H6cmM78waTY&feature=youtu.be&t=767

3

i

Warren Wertheim Michael Donnelly Keerti Agrawal Mahan Hosseinzadeh Yorgos Askalidis
Head of Forecast Sr. Data Scientist Data Scientist Data Scientist Sr. Data Scientist



Warren Wertheim Michael Donnelly Keerti Agrawal Mahan Hosseinzadeh Yorgos Askalidis
Head of Forecast Sr. Data Scientist Data Scientist Data Engineer Sr. Data Scientist

yorgos@spotify.com



