#### Responsible Al

Delivering Data Science Safely at Scale

**Tom Cronin** 

Tola Alade

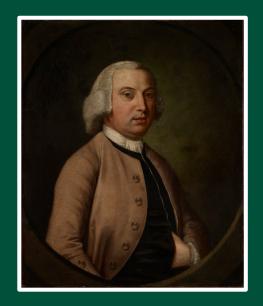
Head of Data Science

Data Scientist



## 





Sampson Lloyd II 1699 - 1779

### Who are we?

#### What is Lloyds Banking Group?

BANKING GROUP

LLOYDS

We own and manage some of the UK's best-known and trusted names in financial services. Everyday we serve over 25 million customers, and we're visible the length and breadth of the land.

Through our brands, we have supported the British people and their businesses for the past 300 years. And now we're building on this rich heritage as we aim to become the best bank for customers. By putting our customers first, keeping things simple and working to make a difference together.

This also means doing things the right way. Keeping our word. Earning our customers' trust. And playing a vital role in strengthening the UK economy.

Our purpose is simple: to help Britain's people, businesses and communities prosper.







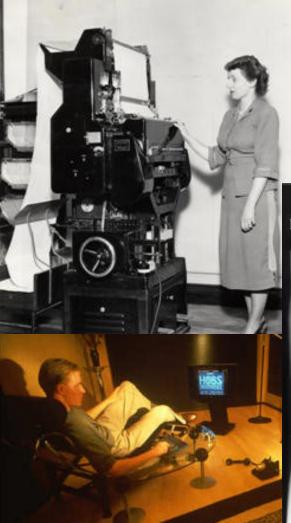












Joseph & Bentagh 6 April 1916 The GOVERNOUR & COMPANY of the BANK OF SCOTLAND constituted by Act of Parliament Do hereby oblige themselves to pay to David Jones or the Barrer Twelve pound's Scots on demand of Directors Gun Just Gun



#### We are Group Transformation



**Virtual Assistants** 



Data Science & Machine Learning



**Robotic Process Automation** 

We are the Applied Science Group

# What is Responsible AI?



### Data Ethics & Fair Models

Treating customers fairly through ethical use of data and models



#### **Explainable AI**

Enabling transparent
Machine Learning models
and tools to deliver better
outcomes



### Lifecycle & Governance

Embedded governance & control to deliver Al products safely and at scale



### Explainable Al

XAI

#### Al is everywhere...









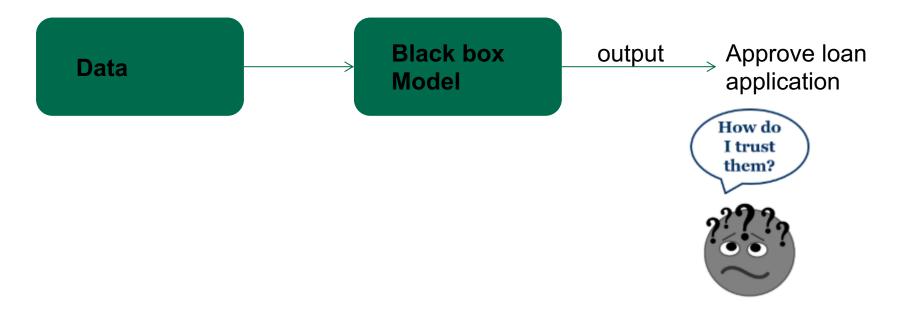






### XAI is the ability to explain a machine learning model prediction



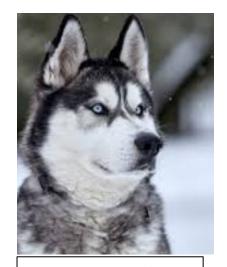


#### XAI as a debugging tool





Predicted: wolf Actual: wolf



Predicted: wolf Actual: husky

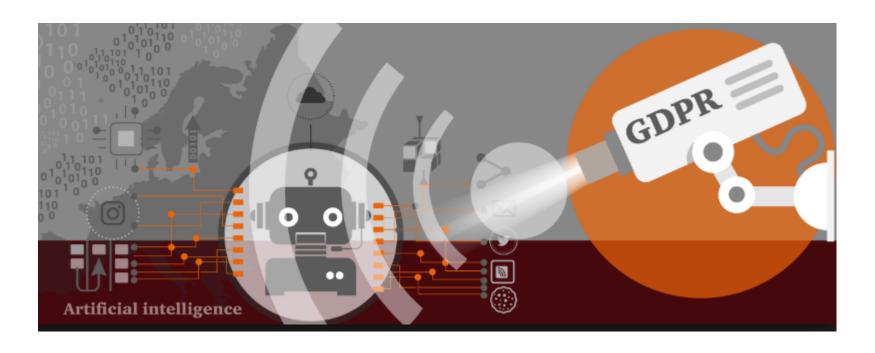


Predicted: husky Actual: husky

#### **Snow detector**

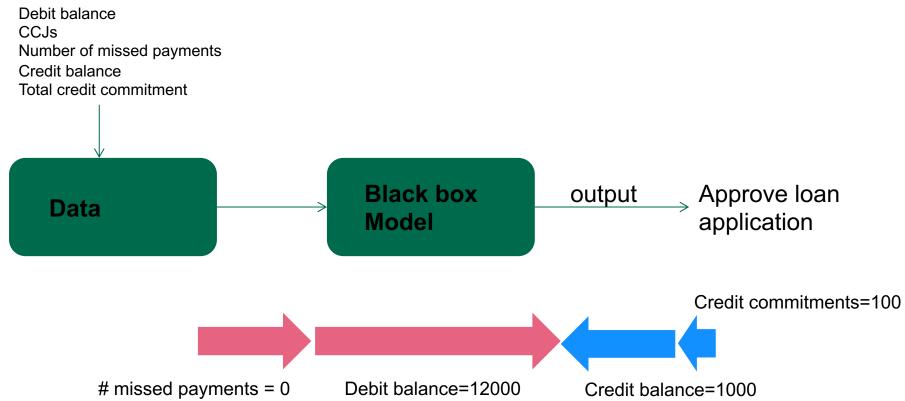






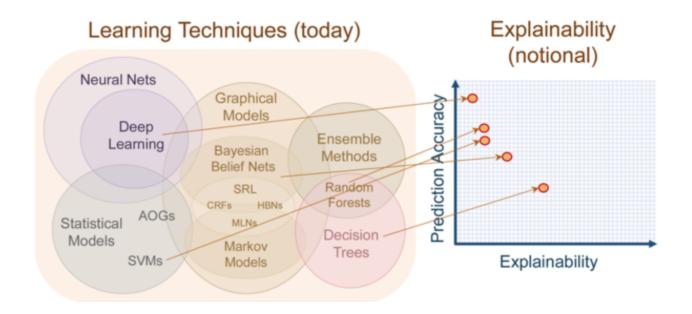








#### Interpretability SOMETIMES comes at a cost...



Source: http://nautil.us/issue/40/learning/is-artificial-intelligence-permanently-inscrutable

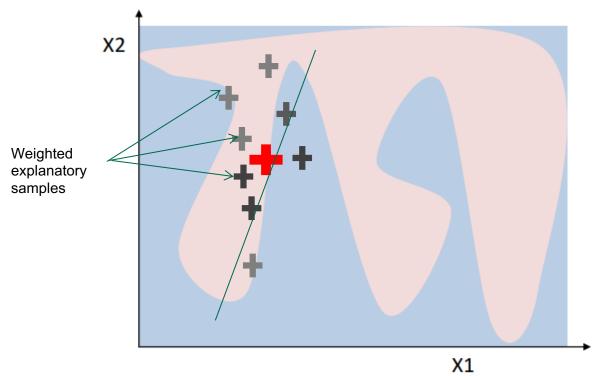
#### **XAI** Libraries



- LIME: https://github.com/marcotcr/lime
- Anchor: https://github.com/marcotcr/anchor
- SHAP: https://github.com/slundberg/shap
- ELI5: https://github.com/TeamHG-Memex/eli5/tree/master/eli5
- Skater: https://github.com/datascienceinc/Skater
- sklearn-expertsys: https://github.com/tmadl/sklearn-expertsys



#### LIME Local Interpretable Model-Agnostic Explanations



$$\emptyset_1 x_1 + \emptyset_2 x_2 + \dots + \emptyset_n x_n = \widehat{y}$$

 $\emptyset_i$  = coefficient of feature i

 $\hat{y}$  = estimate of y

y = predicted outcome of the black
box model



#### **Anchor: Model Agnostic based on if then rules**

|         | If                                                                              | Predict        |
|---------|---------------------------------------------------------------------------------|----------------|
| adult   | No capital gain or loss, never married                                          | ≤ 50 <b>K</b>  |
|         | Country is US, married, work hours $> 45$                                       | > 50K          |
| rcdv    | No priors, no prison violations and crime not against property                  | Not rearrested |
|         | Male, black, 1 to 5 priors, not married, and crime not against property         | Re-arrested    |
| lending | FICO score ≤ 649                                                                | Bad Loan       |
|         | $649 \leq$ FICO score $\leq 699$ and $\$5,400 \leq$ loan amount $\leq \$10,000$ | Good Loan      |

Source: https://github.com/marcotcr/anchor



#### **SHAP Shapley Additive exPlanations**

The Shapley value for a certain feature i (out of n total features), given a prediction p (this is the prediction by the complex model) is

$$\varphi_i = \sum_{S \subseteq F\{i\}} \frac{|S|!(|F|-|S|-1)!}{|F|!} \left[ f_{S \cup \{i\}} (x_{S \cup \{i\}}) - f_S(x_S) \right]$$

Difference in predicted value with and without feature i added in to some subset of other features

|S| = length of set of feature groupings (minus the feature *i* we are interested in)

|S|! = number of permutations of set S

|F| - |S| - 1 = number of features to be added after feature I

(|F| - |S| - 1)! = number of possible ways the features can be added

F = number of features



#### **SHAP Shapley Additive exPlanations**

Features: {Age, Height, Weight, Smoker} Predicted class for instance X: Diabetic

| Combinations | Age | Height | Weight |
|--------------|-----|--------|--------|
| 1            | No  | No     | No     |
| 2            | Yes | No     | No     |
| 3            | No  | Yes    | No     |
| 4            | No  | No     | Yes    |
| 5            | Yes | No     | Yes    |
| 6            | Yes | Yes    | No     |
| 7            | No  | Yes    | Yes    |
| 8            | Yes | Yes    | Yes    |

#### XAI demo with SHAP

#### Illustrative example



#### Task:

Classify household mode of transportation

Base model:

sklearn Random Forest classifier

**Explanation model:** 

TreeSHAP

