
Integrating
Elasticsearch
into Analytics
Workflows

REV2
May 24, 2019

STEPHANIE KIRMER

@data_stephanie
github.com/skirmer/elastic_analytics

Introducing Elasticsearch

Libraries for R and Python

Querying and Filtering

Summarizing

Further Reading

AGENDA

Introducing
Elasticsearch

• Part of a family of data storage options called NoSQL
• NOT the same as tabular or SQL style data storage

• Optimized for fast and powerful searching
• Scales to “big data”– but usable for small projects
• Open source tool

*Sometimes abbreviated “ES” – don’t get confused by this!

Overview

Master
Node

Data
Node 1
•Index A

Data
Node 2
•Index A
replica

Data
Node 3
•Index B
(1st half)

Data
Node 4
•Index B
(2nd half)

Visualizing Elasticsearch Storage

• Cluster = group of nodes

• Master Node = central brain
• Home of search capabilities

• Data Node = where data is stored
• Where master node looks for

documents

Master
Node

Data
Node 1
•Index A

Data
Node 2
•Index A
replica

Data
Node 3
•Index B
(1st half)

Data
Node 4
•Index B
(2nd half)

Visualizing Elasticsearch Storage

Data Architecture
• Data is divided into indices
• Indices :

• Are user-defined groupings of data
with some commonality

• can live on one node, or
• can be “sharded” and broken across

nodes
• can be duplicated on different nodes

NoSQL is a different paradigm for
thinking about data.

Tabular Data vs
Document-Based
Data

{"_index":"utexas",
"_type":"data",
"_id":"AWbU6WJiWX1fgzrfh4p1",
"_score":1.0,
"_source":

{"institution_id":3599,
"institution_name":"UNIVERSITY OF TEXAS - RIO GRANDE VALLEY",
"deglevl_code":3,
"deglevel":"Baccalaureate",
"degcip_4dig":901,
"ciptitle":"COMMUNICATION AND MEDIA STUDIES",
"grad_cohort":2007,
"grad_cohort_label":"2007-2009",
"year_postgrad":1,
"p25_earnings":26518.57,
"p50_earnings":42166.31,
"p75_earnings":50439,
"system":"utsys",
"cellcount":70}}

Safe

• Copying your
data easily and
conveniently
(via replicas) =
if a node fails,
your data is
safe

Fast

• ES can search
in parallel on
multiple nodes
and replicas,
and find your
data faster

Scalable

• Once you
establish your
ES database,
you can add
nodes and allow
your database
to grow

Open Source

• Free to use at
small scale,
substantial
documentation,
community
support

Why Use Elasticsearch?

System Requirements:
- Docker installed and running
- Cloned: www.github.com/skirmer/elastic_analytics

Setup Steps (see the README to copy/paste)
- Get into the top level of the cloned repo
- At Terminal:

1. ./supporting_materials/setup_texas.sh 5.5

2. curl -X POST 'http://localhost:9200/utexas/_bulk' -H 'Content-Type:
application/json' --data-binary @supporting_materials/ut_data.json

Start up R/Rstudio or Python as you prefer, and run further commands from there.

Follow Along!
When you see this arrow,
you can try it out yourself!

Libraries for R
and Python
Choosing the right tool for your
needs

Library Characteristics

KEY
CONSIDERATIONS

Secure
Authentication
Do you need to securely
log in?

Output Format
Do you mind handling
JSON output?

Query
Construction
Is writing query language
a barrier?

Returns
Supports

AuthenticationLibrary

uptasticsearch Tabular

JSONelastic

JSONelasticsearch-
py

R Python
Query

Language

Required

Supported,
not required

Supported,
not required

Uptasticsearch (R)

test_up <- uptasticsearch::es_search(
es_host = "http://localhost:9200"
, es_index = "utexas"
, query_body = query_string
, max_hits = 10
, size = 10)

Elastic (R)

elastic::connect(es_host =
"http://localhost:9200")

test_e <- elastic::Search(index =
"utexas”

, body = query_string
, size = 10
, raw = TRUE)

test_e2 <-
jsonlite::fromJSON(test_e)$hits$hits

Non-Query Language Option:

test_e <- elastic::Search(
index = "utexas"
, q = "grad_cohort:*"
, size = 10
, raw = TRUE)

query_string <- '{"query": {"match_all":{}}}'

R Options

Uptasticsearch (Py)

import json
import uptasticsearch

es_search(
es_host="http://localhost:9200",
query_body=query_string,
max_hits = 10,
es_index="utexas”

)

Elasticsearch-py (Py)

from elasticsearch import Elasticsearch

es = Elasticsearch(['http://localhost:9200'])

res = es.search(
index="utexas",
body= query_text

)

res['hits']['hits']

Non-Query Language Option
(Elasticsearch_dsl):

from elasticsearch_dsl import Search

res2 = Search(using = es).query("match",
_index = 'utexas').execute()

res2.to_dict()['hits']['hits']

Python Options

query_text = {"query": {"match_all": {}}}
query_string = '{"query": {"match_all": {}}}'

Querying and
Filtering
Get what you need out of your
database

Elastic Query DSL (domain specific language): a JSON-style syntax built to
interact with ES databases.

Why use query language?
Consistency across interfaces and media
Precision and power in search, filtering, and aggregating – ES was built to work with this.

Downsides?
It’s sometimes hard to work with – idiosyncratic rules of syntax.

Query Language Crash Course

R:
uptasticsearch::get_fields(es_host = "http://localhost:9200",
es_indices = "utexas")

At Command Line:
curl http://localhost:9200/utexas/_mapping > fields.json

Identifying Available Fields

Return all records :
{

“query”: { "match_all": { } }

}

Constructing a Basic Query

query_text = {"query": {"match_all": {}}}
query_string = '{"query": {"match_all": {}}}'

Remember this from earlier!
All the queries we look at can be
passed to R or Python this way.

Return all records :
{

“query”: { "match_all": { } }

}

Constructing a Basic Query

Match one field :
{

“query”: { "match": { "ciptitle.raw": "AREA STUDIES” } }

}

Constructing a Basic Query

Match one field AND Greater Than one field :
{

“query”:

{ "bool" : {

"must" : { "match": { "ciptitle.raw": "AREA STUDIES" } }

, "must" : { "range" : { "cellcount" : { "gte" : 0 } } }

} }

}

Constructing a Basic Query

Match two fields AND Greater Than one field :
{

“query”:

{ "bool" : {

"must" : [{ "match": { "ciptitle.raw": "AREA STUDIES" } }

, { "match": { "institution_id": "3599" } }

, { "range" : { "cellcount" : { "gte" : 0 } } }]

} }

}

Constructing a Basic Query

match_phrase

Match a set of words all together.

exists

Supply a field, returns documents
that have at least one non-
null value in the original field.

wildcard
Pass a string with a wildcard
anywhere – but be careful, it can
be a slow search!

filter
Just like “must” except without
scoring – we’ll talk about this in a
moment.

must_not
Instead of “must” – use to omit
records with a word or phrase.

This is just a small
sample- ES query
language offers many
very powerful search
options!

Some Other Querying Options

ES queries can provide a numeric score indicating how well
the document meets the criteria given.

When you use “query” at the beginning of the query, you get
a score returned alongside your results.

When you use “filter”, Elasticsearch does not score the
results on the given criteria.

Query vs Filter
Scoring Results

Query
• Scored

Filter
• Not

Scored

Results
• Documents
• Scored

based on
query

{ "query":

{ "bool": {

"must": [
{ "match": { "ciptitle.raw": "AREA STUDIES” } }

, { "match": { ”deglevel": ”Baccalaureate" } }

] ,

"filter": [

{ ”match": {"institution_id": "3599" } }

, { "range": { "cellcount" : { "gte" : 0 } } }

]

} }

}

Query vs Filter
Example

Query
• Scored

Filter
• Not

Scored

Results
• Documents
• Scored

based on
query

Do we want scores
returned for this

search? Yes.

Do we want
the scores
to include

these
criteria?

NO.

Query vs Filter
Example

Same query, first with one criterion scored (2 in filter) and second with all 3 criteria scored.

Summarizing
Get fancier with your searching!

Match one field, Summarize one field:
{
"query": {"match": {"institution_id": "3599" }} ,

"aggs" : {
"common_majors" : {

"terms" : {
"field" : "ciptitle.raw"

}
}

}
}

Summarizing in Query

Create a new field
called
common_majors,
which sums up the
unique values in
ciptitle.raw for this
specific search.

Produces:

Summarizing in Query

- At Terminal: ./supporting_materials/cleanup_local.sh

This shuts down the docker container, destroying our demo database – but you can create it again just by
going back to the beginning.

If you’re following along, clean up

Further Reading

ES Query Language
• http://elasticsearch-cheatsheet.jolicode.com/

• https://elasticsearch-dsl.readthedocs.io/en/latest/search_dsl.html
• https://www.elastic.co/guide/en/elasticsearch/reference/current/_introducing_the_query_language.html

• https://www.elastic.co/guide/en/elasticsearch/reference/6.4/query-dsl-bool-query.html
• https://www.elastic.co/guide/en/elasticsearch/reference/6.4/query-filter-context.html

Library Docs
• https://elasticsearch-py.readthedocs.io/en/master/index.html

• https://github.com/ropensci/elastic
• https://github.com/UptakeOpenSource/uptasticsearch – Make contributions, the packages are always improving!

Data Credit:
The data being used in this tutorial is from data.world, and comes out of the hard work done by Annie Millerbernd of the San Antonio Express-
News. You can learn more about it and see the original dataset here: https://data.world/amillerbernd/ut-system-post-grad-earnings

Explore More about Elasticsearch!

github.com/skirmer/elastic_analytics
www.stephaniekirmer.com

@data_stephanie

