Machine Learning at WeWork:

Creating Community Through Graph Embeddings
Rev Summit | New York 2019
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On the Physical side, we use data to
’ | L optimize how we construct, maintain
“x I I and design our spaces

Ao Ao ,] -reduce extraneous costs from
= construction and building logistics

-encourage physical connections
= 74 through intelligent interior design

-

-maximize utilization
Physical Space:

Use data to optimize how we construct,
maintain and design our spaces WCWOl‘k



On the Digital, we focus mostly on helping ® s

in joining WeWork? Send them a quick
email referring them to WeWork and

people make connections: L i
| R e
-promote their business oo

-request help from others

-simply make new friends and connections

Digital Space:

Focus on helping people make connections
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In order to better facilitate connections, WeWork started an
ML team to focus on rec systems
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In order to better facilitate connections, WeWork started an
ML team to focus on rec systems
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In order to better facilitate connections, WeWork started an
ML team to focus on rec systems

-personalized newsfeed

-text classifiers

-entity extraction

-onboarding skills suggestion
-conference rooms recommender
-experiment platform
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Graph Embeddings with node2vec

Or: How to recommend members for fun and profit
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Graph Embeddings with node2vec

1) Business Use Case
2) Data

3) Model
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Use Case: Member Needs

Our members have broadly expressed the desire to:
-meet other members in the community

-make social and professional connections

-feel a sense of “belonging”
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Use Case: Member Needs

We are thus interested in facilitating the meeting of members
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Use Case: Member Needs

How do we create an intelligent member-to-member
recommendation service?
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Data Structure: Member Knowledge Graph
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Member Knowledge Graph

A central repository of information about our members
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Member Knowledge Graph

A central repository of information about our members

LOADING ...

wework



Member Knowledge Graph

A central repository of information about our members
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Member Knowledge Graph

A central repository of information about our members
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Member Knowledge Graph

We collect data from:

-member profiles
-member interactions on the app
-posts you’ve liked
-events you’ve bookmarked
-community team notes
-external data sources that we match to our internal data
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Member Knowledge Graph

KALMAN CHAPMAN
Engineer at WeWork

Followers

ABOUT ME

I'm a cool guy leading a cool life? probably!
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Member Knowledge Graph

All this information is expressed in graph form
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Member Knowledge Graph

All this information is expressed in graph form

The color blue

Sleeveless shirts /
\ Motorbikes

Laundry WeWOI‘k



Member Knowledge Graph

All this information is expressed in graph form

Jackets

Cell phones \ .
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The color blue



Member Knowledge Graph

Connecting members through shared skills or interests

The color blue
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Member Knowledge Graph

Connecting members through shared skills or interests

The color blue
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Member Knowledge Graph

Connecting members through shared skills or interests

Laundry
The color blue

The color blue
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Member Knowledge Graph

We assume that people who have lots of shared skills or interests may
be good recommendations for each other

Laundry
The color blue

The color blue
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Member Knowledge Graph

How do we calculate how member similarity using common skills
or interests?

Laundry
The color blue

The color blue
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Embeddings
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Word Embeddings for Text

Distributed Representations of Words and Phrases
and their Compositionality

Tomas Mikolov Ilya Sutskever Kai Chen
Google Inc. Google Inc. Google Inc.
Mountain View Mountain View Mountain View
mikolov@google.com ilyasu@google.com kai@google.com
Greg Corrado Jeffrey Dean
Google Inc. Google Inc.
Mountain View Mountain View
gcorrado@google.com jeff@google.com
Abstract

The recently introduced continuous Skip-gram model is an efficient method for
learning high-quality distributed vector representations that capture a large num-
ber of precise syntactic and semantic word relationships. In this paper we present
several extensions that improve both the quality of the vectors and the training
speed. By subsampling of the frequent words we obtain significant speedup and
also learn more regular word representations. We also describe a simple alterna-
tive to the hierarchical softmax called negative sampling.

An inherent limitation of word representations is their indifference to word order
and their inability to represent idiomatic phrases. For example, the meanings of
“Canada” and “Air” cannot be easily combined to obtain “Air Canada”. Motivated
by this example, we present a simple method for finding phrases in text, and show
that learning good vector representations for millions of phrases is possible.

Learn vector representations of words that capture semantic meanings
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Word Embeddings for Text

Process: train a neural network
Outcome: each word can be represented by an N-dimensional vector
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Word Embeddings for Text

Ultimately the results of this model can be used for many NLP tasks
such as word similarity, clustering, classification

woman gnrl
slower

m \
father
\ queen son slow
cat king

dog \ mother <A
\ cats daughter fast
dogs France
England longer
/ / he fastest
Paris Italy she long
Londoy‘

hlmself longest

Rome herself
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Node Embeddings for Graphs

Can we do something similar for graph networks?
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Node Embeddings for Graphs

Instead of words we have nodes
Each node can be represented with a

o vector after training a neural
network model
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Node Embeddings for Graphs

Node = person
Edge = Social interaction between 2 people

OR

P 80 Edge = Similarity between 2 people’s skills
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Edge = Some other function...
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Node Embeddings for Graphs

Nodes with similar vectors
(measured by something like cosine
similarity) should be clustered close

together
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Node Embeddings for Graphs

[cs.SI] 3 Jul 2016

Luckily, someone’s already written a paper about this...

node2vec: Scalable Feature Learning for Networks

Aditya Grover
Stanford University
adityag@cs.stanford.edu

ABSTRACT

Prediction tasks over nodes and edges in networks require careful
effort in engineering features used by learning algorithms. Recent
research in the broader field of representation learning has led to
significant progress in automating prediction by learning the fea-
tures themselves. However, present feature learning approaches
are not expressive enough to capture the diversity of connectivity
patterns observed in networks.

Here we propose node2vec, an algorithmic framework for learn-
ing continuous feature representations for nodes in networks. In
node2vec, we learn a mapping of nodes to a low-dimensional space
of features that maximizes the likelihood of preserving network
neighborhoods of nodes. We define a flexible notion of a node’s
network neighborhood and design a biased random walk procedure,
which efficiently explores diverse neighborhoods. Our algorithm
generalizes prior work which is based on rigid notions of network

Jure Leskovec
Stanford University
jure@cs.stanford.edu

predict whether a pair of nodes in a network should have an edge
connecting them [18]. Link prediction is useful in a wide variety
of domains; for instance, in genomics, it helps us discover novel
interactions between genes, and in social networks, it can identify
real-world friends [2, 34].

Any supervised machine learning algorithm requires a set of in-
formative, discriminating, and independent features. In prediction
problems on networks this means that one has to construct a feature
vector representation for the nodes and edges. A typical solution in-
volves hand-engineering domain-specific features based on expert
knowledge. Even if one discounts the tedious effort required for
feature engineering, such features are usually designed for specific
tasks and do not generalize across different prediction tasks.

An alternative approach is to learn feature representations by
solving an optimization problem [4]. The challenge in feature learn-
ing is defining an objective function, which involves a trade-off
in balancine comnutational efficiencv and predictive accuracv. On
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word2vec vs Node2vec

word2vec:

Given a corpus, maximize P(next word | context words)

Source Text
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word2vec vs Node2vec

word2vec:

Given a corpus, maximize P(next word | context words)
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word2vec vs Node2vec

word2vec:

Given a corpus, maximize P(next word | context words)

Source Text
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(the, quick)
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(quick, the)
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(quick, fox)
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(brown, quick)
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(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

CBOW
Skip-gram
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word2vec vs Node2vec

node2vec:

For node2vec, we want to maximize the log-probability of
observing a network neighborhood N (u) for a node u
conditioned on its feature representation

max Y log Pr(Ns(u)|f(u)).

! uevV
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word2vec vs Node2vec

node2vec:

In order to make this problem tractable, we assume:
- Conditional independence of neighborhood nodes

Pr(Ns)|f(w) =[] Pr(nif(w).

niENg(u)
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word2vec vs Node2vec

node2vec:

In order to make this problem tractable, we assume:
- Symmetry in feature space (a source node and neighborhood node

have a symmetric effect over each other)
- Conditional likelihood of every node pair written as a softmax function

i’ 2)) — exp(f(’ni) ’ f(u))
Pr(n;|f(u)) ZUEV exp(f(v) - f(u))
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word2vec vs Node2vec

node2vec:

With these two assumptions, original function simplifies to:

max Z log Pr(Ns(u)|f(u)).

! ueV l

max [—logZu—I- > f(n)- f(u)].

f
ucV n;ENg(u)
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word2vec vs Node2vec

node2vec:

If we know the representation for node v (the gray node), can we
predict its neighborhood (x1, x2, x3)?
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node2vec Algorithm

Problem:

There’s no obvious way to identify separate neighborhoods
in a graph like you can identify sentences in a document
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node2vec Algorithm

Solution:

Simulate many random walks around each node to define
possible “neighborhoods” around the node
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node2vec Algorithm

Each walk is a directed subgraph analogous to a “sentence”
In a text corpus

Graph Input data Embeddings

sampling
strategy

skip-gram

model

U S
vy 1
Vol ol

(> > >

Node2vec embedding process

\ 4
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node2vec Algorithm

From the graph on the left we can create multiple potential
neighborhoods and use them as “training data”

Graph Input data Embeddings

sampling
strategy

skip-gram

model

U S
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Vol ol

\ 4

(> > >

Node2vec embedding process
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node2vec Algorithm

In order to efficiently explore many possible neighborhoods of node u, the
random walk algorithm takes two parameters P and Q

Determines how “locally” or “globally” the walk explores the neighborhood of
node u

High P = less likely to revisit an already-visited node
High Q = more likely to visit close-by nodes
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node2vec Algorithm

Combinations of P, Q can emulate different sampling strategies:

Breadth First Search: Neighborhood is restricted to immediate neighbors of
the node u

Depth First Search: Neighborhood consists of nodes sampled at increasing
distances from u
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node2vec

The node2vec algorithm can be decomposed into 3 steps:
a) Precompute transition probabilities for the random walk simulation

b) For every node, simulate r random walks of fixed length /
c) Feed random walks into a word2vec model and solve with SGD
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node2vec

Once we train a model and find embeddings for each node we can do:
- Clustering using node embeddings

- Node classification

- Community Detection
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Clustering off node2vec

For each WeWork location we can run node2vec on its social graph...
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Clustering off node2vec

Using the data in the Member Knowledge Graph...

Laundry
The color blue

The color blue
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Clustering off node2vec

Map every member to a vector...

array([0.4538611 , 0.27743287, 0.25933201, 0.24732495, 0.70126288,
0.30814868, 0.16309851, 0.979808 , 0.1905782 , 0.23823703])

array([0.37425164, 0.3933045 , 0.55216442, 0.09399904, 0.00195709,
0.18054741, 0.91324634, 0.96009897, 0.37971078, 0.98799726])

array([0.21394969, 0.96883666, 0.44219008, 0.38977323, 0.1161356 ,
0.30654193, 0.34719876, 0.3183716 , 0.73832435, 0.12602231])
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Clustering off node2vec

Then retrieve the most similar members for each member...
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Clustering off node2vec

And use this to power different kinds of member recommendations
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Clustering off node2vec

And use this to power different kinds of member recommendations

-General member recommendations during onboarding
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Clustering off node2vec

And use this to power different kinds of member recommendations
-General member recommendations during onboarding

-Facilitated introductions between WeWork Labs members
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Thanks for Listening!
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