
Rev Summit | New York 2019

Machine Learning at WeWork:

Creating Community Through Graph Embeddings

PHYSICAL + DIGITAL DATA

Physical Space:

Use data to optimize how we construct,
maintain and design our spaces

On the Physical side, we use data to
optimize how we construct, maintain
and design our spaces

-reduce extraneous costs from
construction and building logistics

-encourage physical connections
through intelligent interior design

-maximize utilization

Digital Space:

Focus on helping people make connections

On the Digital, we focus mostly on helping
people make connections:

-promote their business

-request help from others

-simply make new friends and connections

In order to better facilitate connections, WeWork started an
ML team to focus on rec systems

In order to better facilitate connections, WeWork started an
ML team to focus on rec systems

In order to better facilitate connections, WeWork started an
ML team to focus on rec systems

-personalized newsfeed
-text classifiers
-entity extraction
-onboarding skills suggestion
-conference rooms recommender
-experiment platform

Graph Embeddings with node2vec

Or: How to recommend members for fun and profit

Graph Embeddings with node2vec

1) Business Use Case

2) Data

3) Model

Use Case: Member Needs

Our members have broadly expressed the desire to:
-meet other members in the community
-make social and professional connections
-feel a sense of “belonging”

Use Case: Member Needs

We are thus interested in facilitating the meeting of members

Use Case: Member Needs

How do we create an intelligent member-to-member
recommendation service?

Data Structure: Member Knowledge Graph

Member Knowledge Graph

A central repository of information about our members

Member Knowledge Graph

A central repository of information about our members

Member Knowledge Graph

A central repository of information about our members

Member Knowledge Graph

A central repository of information about our members

Member Knowledge Graph

We collect data from:

-member profiles
-member interactions on the app

-posts you’ve liked
-events you’ve bookmarked

-community team notes
-external data sources that we match to our internal data

Member Knowledge Graph

Member Knowledge Graph

All this information is expressed in graph form

Member Knowledge Graph

All this information is expressed in graph form

Sleeveless shirts

Laundry

The color blue

Motorbikes

Member Knowledge Graph

All this information is expressed in graph form

Cell phones
Jackets

The color blue

Member Knowledge Graph

Connecting members through shared skills or interests

The color blue

Member Knowledge Graph

Connecting members through shared skills or interests

The color blue

Member Knowledge Graph

Connecting members through shared skills or interests

Laundry
The color blue

The color blue

Member Knowledge Graph

We assume that people who have lots of shared skills or interests may
be good recommendations for each other

Laundry
The color blue

The color blue

Member Knowledge Graph

How do we calculate how member similarity using common skills
or interests?

Laundry
The color blue

The color blue

Embeddings

Word Embeddings for Text

Learn vector representations of words that capture semantic meanings

Word Embeddings for Text

Process: train a neural network
Outcome: each word can be represented by an N-dimensional vector

Word Embeddings for Text

Ultimately the results of this model can be used for many NLP tasks
such as word similarity, clustering, classification

Node Embeddings for Graphs

Can we do something similar for graph networks?

Node Embeddings for Graphs

Instead of words we have nodes

Each node can be represented with a
vector after training a neural
network model

Node Embeddings for Graphs

Node = person

Edge = Social interaction between 2 people

OR

Edge = Similarity between 2 people’s skills

OR

Edge = Similarity between 2 people’s interests

OR

Edge = Some other function…

Node Embeddings for Graphs

Nodes with similar vectors
(measured by something like cosine
similarity) should be clustered close
together

Node Embeddings for Graphs

Luckily, someone’s already written a paper about this…

word2vec vs Node2vec

word2vec:

Given a corpus, maximize P(next word | context words)

word2vec vs Node2vec

word2vec:

Given a corpus, maximize P(next word | context words)

CBOW

word2vec vs Node2vec

word2vec:

Given a corpus, maximize P(next word | context words)

CBOW

Skip-gram

word2vec vs Node2vec

node2vec:

For node2vec, we want to maximize the log-probability of
observing a network neighborhood Ns(u) for a node u
conditioned on its feature representation

word2vec vs Node2vec

node2vec:

In order to make this problem tractable, we assume:
- Conditional independence of neighborhood nodes

word2vec vs Node2vec

node2vec:

In order to make this problem tractable, we assume:
- Symmetry in feature space (a source node and neighborhood node

have a symmetric effect over each other)
- Conditional likelihood of every node pair written as a softmax function

word2vec vs Node2vec

node2vec:

With these two assumptions, original function simplifies to:

word2vec vs Node2vec

node2vec:

If we know the representation for node v (the gray node), can we
predict its neighborhood (x1, x2, x3)?

node2vec Algorithm

Problem:

There’s no obvious way to identify separate neighborhoods
in a graph like you can identify sentences in a document

node2vec Algorithm

Solution:

Simulate many random walks around each node to define
possible “neighborhoods” around the node

node2vec Algorithm

Each walk is a directed subgraph analogous to a “sentence”
in a text corpus

node2vec Algorithm

From the graph on the left we can create multiple potential
neighborhoods and use them as “training data”

node2vec Algorithm

In order to efficiently explore many possible neighborhoods of node u, the
random walk algorithm takes two parameters P and Q

Determines how ”locally” or “globally” the walk explores the neighborhood of
node u

High P à less likely to revisit an already-visited node
High Q à more likely to visit close-by nodes

node2vec Algorithm

Combinations of P, Q can emulate different sampling strategies:

Breadth First Search: Neighborhood is restricted to immediate neighbors of
the node u

Depth First Search: Neighborhood consists of nodes sampled at increasing
distances from u

node2vec

The node2vec algorithm can be decomposed into 3 steps:

a) Precompute transition probabilities for the random walk simulation
b) For every node, simulate r random walks of fixed length l
c) Feed random walks into a word2vec model and solve with SGD

node2vec

Once we train a model and find embeddings for each node we can do:

- Clustering using node embeddings

- Node classification

- Link prediction

- Community Detection

Clustering off node2vec

For each WeWork location we can run node2vec on its social graph…

Clustering off node2vec

Using the data in the Member Knowledge Graph…

Laundry
The color blue

The color blue

Clustering off node2vec

Map every member to a vector…

Clustering off node2vec

Then retrieve the most similar members for each member…

Clustering off node2vec

And use this to power different kinds of member recommendations

Clustering off node2vec

And use this to power different kinds of member recommendations

-General member recommendations during onboarding

Clustering off node2vec

And use this to power different kinds of member recommendations

-General member recommendations during onboarding

-Facilitated introductions between WeWork Labs members

Thanks for Listening!

