Machine Learning at WeWork:

Creating Community Through Graph Embeddings
Rev Summit | New York 2019

wework

-

T

- 2

L B 2 7 e L0
' 0 L 1 1) S A R P O
Tt 1 e o e ¥ = e R 48 | ¥

v

5 &3

PHYSICAL + DIGITAL DATA

: .’.E-, 2o
1 o RS
b= - T

On the Physical side, we use data to
’ | L optimize how we construct, maintain
“x I I and design our spaces

Ao Ao ,] -reduce extraneous costs from
= construction and building logistics

-encourage physical connections
= 74 through intelligent interior design

-

-maximize utilization
Physical Space:

Use data to optimize how we construct,
maintain and design our spaces WCWOl‘k

On the Digital, we focus mostly on helping ® s

in joining WeWork? Send them a quick
email referring them to WeWork and

people make connections: L i
| R e
-promote their business oo

-request help from others

-simply make new friends and connections

Digital Space:

Focus on helping people make connections

wework

In order to better facilitate connections, WeWork started an
ML team to focus on rec systems

wework

In order to better facilitate connections, WeWork started an
ML team to focus on rec systems

wework

In order to better facilitate connections, WeWork started an
ML team to focus on rec systems

-personalized newsfeed

-text classifiers

-entity extraction

-onboarding skills suggestion
-conference rooms recommender
-experiment platform

wework

Graph Embeddings with node2vec

Or: How to recommend members for fun and profit

wework

Graph Embeddings with node2vec

1) Business Use Case
2) Data

3) Model

wework

Use Case: Member Needs

Our members have broadly expressed the desire to:
-meet other members in the community

-make social and professional connections

-feel a sense of “belonging”

wework

Use Case: Member Needs

We are thus interested in facilitating the meeting of members

wework

Use Case: Member Needs

How do we create an intelligent member-to-member
recommendation service?

wework

Data Structure: Member Knowledge Graph

@
@

D ° O @ O

@ ‘ ®

o @ KNOWLEDGE .
GRAPH
O

: o @

a a ® .0

wework

Member Knowledge Graph

A central repository of information about our members

wework

Member Knowledge Graph

A central repository of information about our members

LOADING ...

wework

Member Knowledge Graph

A central repository of information about our members

Dﬂ@@ ®®® [Felfe
[
@@@ —rf [
(o]
@@@ —rf

@

<]

LOADING ...

wework

Member Knowledge Graph

A central repository of information about our members

Dﬁ@@ ®®® [Felfe
[
* @@@ —rf [
(]
®®® —rf [

@

ile]

LOADING ...

wework

Member Knowledge Graph

We collect data from:

-member profiles
-member interactions on the app
-posts you’ve liked
-events you’ve bookmarked
-community team notes
-external data sources that we match to our internal data

wework

Member Knowledge Graph

KALMAN CHAPMAN
Engineer at WeWork

Followers

ABOUT ME

I'm a cool guy leading a cool life? probably!

wework

Member Knowledge Graph

All this information is expressed in graph form

wework

Member Knowledge Graph

All this information is expressed in graph form

The color blue

Sleeveless shirts /
\ Motorbikes

Laundry WeWOI‘k

Member Knowledge Graph

All this information is expressed in graph form

Jackets

Cell phones \ .

wework

The color blue

Member Knowledge Graph

Connecting members through shared skills or interests

The color blue

wework

Member Knowledge Graph

Connecting members through shared skills or interests

The color blue

wework

Member Knowledge Graph

Connecting members through shared skills or interests

Laundry
The color blue

The color blue

wework

Member Knowledge Graph

We assume that people who have lots of shared skills or interests may
be good recommendations for each other

Laundry
The color blue

The color blue

wework

Member Knowledge Graph

How do we calculate how member similarity using common skills
or interests?

Laundry
The color blue

The color blue

wework

Embeddings

wour pork
hour . beef®?
mrs siad: rodicken
cake g
epper
gﬂl‘:gﬁx keep fat while ol g,
p P
flour soft drignder madehese his he corn
good " food their quart
8 roll into an PYwerea) or pat
oven clean wattere]ren . are before pie
wash dry until from ofthe _this they lon
remove off . whichinand? i ® bake baking
in heat O onwith"as S’:,qhat cream boiling
ay .
i over when flavor cooking
your juice who Whiteu pONe for 1O it her she ydnalsz too
. cold ready fir out atthem but gg see
& hours 'etthrough againyfter first some hard just . sa'aﬁa onion
IS set have another €nough will rSIeY, ime,
o - pot dish each haﬂeﬂonevmo'e ethere quitm canwould ¢ tga;easmzl
an upon ca Pugmygratetp |1’nay us only part Vim§§pw%?ul
p COVET serve . umbs well e way no spoonful cupliip
W ind stipoupm fil lemon likejittle few other cups
slowly placgjme ithouthosdeing togethemeited tablespoonfuls
strain take withou ever?real stock Mixture tWehreeunds
sew Blftes hot Yery e paste i
. i its SIX
mlnugoélmd senablalsq, e shouldany than about ten”five foyr,
. oil t
cook chopp@f largesmall bestyse MRantfoo "
o season fruit new i
® beaten half Pl€C&ze
awgar fresh . .
sauce ice " thick it d
. . round'a@
cheese milk use jelly thin pigces baper
bread e meat 32 i
reen cooked slices
Yol Dot cale g e
whites
brown more peel
pudding
bake:
8 %oﬁed sweet tt:oﬂee
2 ea

wework

Word Embeddings for Text

Distributed Representations of Words and Phrases
and their Compositionality

Tomas Mikolov Ilya Sutskever Kai Chen
Google Inc. Google Inc. Google Inc.
Mountain View Mountain View Mountain View
mikolov@google.com ilyasu@google.com kai@google.com
Greg Corrado Jeffrey Dean
Google Inc. Google Inc.
Mountain View Mountain View
gcorrado@google.com jeff@google.com
Abstract

The recently introduced continuous Skip-gram model is an efficient method for
learning high-quality distributed vector representations that capture a large num-
ber of precise syntactic and semantic word relationships. In this paper we present
several extensions that improve both the quality of the vectors and the training
speed. By subsampling of the frequent words we obtain significant speedup and
also learn more regular word representations. We also describe a simple alterna-
tive to the hierarchical softmax called negative sampling.

An inherent limitation of word representations is their indifference to word order
and their inability to represent idiomatic phrases. For example, the meanings of
“Canada” and “Air” cannot be easily combined to obtain “Air Canada”. Motivated
by this example, we present a simple method for finding phrases in text, and show
that learning good vector representations for millions of phrases is possible.

Learn vector representations of words that capture semantic meanings

wework

Word Embeddings for Text

Process: train a neural network
Outcome: each word can be represented by an N-dimensional vector

woman
m \ glrl slower
\ father con slow
ueen
cat king q

dog \ mother
\ cats daughter fast
dogs France
England longer
/ / he fastest
Paris Italy she long
Londoy‘

hlmself longest

Rome herself

wework

Word Embeddings for Text

Ultimately the results of this model can be used for many NLP tasks
such as word similarity, clustering, classification

woman gnrl
slower

m \
father
\ queen son slow
cat king

dog \ mother <A
\ cats daughter fast
dogs France
England longer
/ / he fastest
Paris Italy she long
Londoy‘

hlmself longest

Rome herself

wework

Node Embeddings for Graphs

Can we do something similar for graph networks?

e AEEIH;JMITS |
ATHLETES \
ATTACHED | \
s (=] “ .\\‘\/ Yl\
L — \

ANIMALS s ATTENDANT
S50 ekd ESIEZ = = SO KCHEVEMENS @) o
==5 8 g SIS 223 3 £ 2, \ %/\A\‘f.'\ L
== = [} ! = o= Z \

BRI S= & SECOMMONY ECAPTAUST 3 AcHIEVEgg [- e\ N / ®
CHANGED S =E — -.) AN\ S
BECOMING - \\ .\\ ——

st SUC CES S Soisence e ° \ AR oI
culEnA"EcTs 2 we pEnFonMA"cE X TN A" ‘ e —= N \ N
ABILITY 0“ £ S E £ BACKGROUND / S\
@ =
ATHLETE - inmnaoporosy 2 =5 2 WORK B § W
popu@ SURRIBM S8 £2 3 susinessesi “s =E £
S gYIMIE- =& pomuers CHARACTERIE = & =
= = Bglllgllgﬁ BAR = COMEALTERNATIVELY L = <

&5 ACHIEVED ACTIVITY
= - BETTER

CH

wework

Node Embeddings for Graphs

Instead of words we have nodes
Each node can be represented with a

o vector after training a neural
network model

wework

Node Embeddings for Graphs

Node = person
Edge = Social interaction between 2 people

OR

P 80 Edge = Similarity between 2 people’s skills
Barlgl):::r"%h D’QSI‘(’) i
O Missandei
X ,ﬁsa..] A/ Nac/ N Onhgg?ie?e"ys OR
Petyf Lysa ’alme‘ \V \ Viserys Km"yc‘)wo’:.&m
Mastion 5. em_ Remty o e Ctet s ;.

53"539 ~ g Edge = Similarity between 2 people’s interests
Quburn Loc")as jo re d. Gragos a(?y sshu Chg“
o e fyrlon Pycelle

To "(I?“ - a M%" . Ob(e)ryg wace O R

® T
Myrcella PodrickBronn liyn Amory
Ellaria

Edge = Some other function...

wework

Node Embeddings for Graphs

Nodes with similar vectors
(measured by something like cosine
similarity) should be clustered close

together

wework

Node Embeddings for Graphs

[cs.SI] 3 Jul 2016

Luckily, someone’s already written a paper about this...

node2vec: Scalable Feature Learning for Networks

Aditya Grover
Stanford University
adityag@cs.stanford.edu

ABSTRACT

Prediction tasks over nodes and edges in networks require careful
effort in engineering features used by learning algorithms. Recent
research in the broader field of representation learning has led to
significant progress in automating prediction by learning the fea-
tures themselves. However, present feature learning approaches
are not expressive enough to capture the diversity of connectivity
patterns observed in networks.

Here we propose node2vec, an algorithmic framework for learn-
ing continuous feature representations for nodes in networks. In
node2vec, we learn a mapping of nodes to a low-dimensional space
of features that maximizes the likelihood of preserving network
neighborhoods of nodes. We define a flexible notion of a node’s
network neighborhood and design a biased random walk procedure,
which efficiently explores diverse neighborhoods. Our algorithm
generalizes prior work which is based on rigid notions of network

Jure Leskovec
Stanford University
jure@cs.stanford.edu

predict whether a pair of nodes in a network should have an edge
connecting them [18]. Link prediction is useful in a wide variety
of domains; for instance, in genomics, it helps us discover novel
interactions between genes, and in social networks, it can identify
real-world friends [2, 34].

Any supervised machine learning algorithm requires a set of in-
formative, discriminating, and independent features. In prediction
problems on networks this means that one has to construct a feature
vector representation for the nodes and edges. A typical solution in-
volves hand-engineering domain-specific features based on expert
knowledge. Even if one discounts the tedious effort required for
feature engineering, such features are usually designed for specific
tasks and do not generalize across different prediction tasks.

An alternative approach is to learn feature representations by
solving an optimization problem [4]. The challenge in feature learn-
ing is defining an objective function, which involves a trade-off
in balancine comnutational efficiencv and predictive accuracv. On

wework

word2vec vs Node2vec

word2vec:

Given a corpus, maximize P(next word | context words)

Source Text

quick

brown

The

fox jumps

brown

fox|jumps

The

quick- fox|jumps

over the

over the

over the

The

quick

brown - Jjumps

over|the

lazy dog.

lazy dog.

lazy dog.

lazy dog.

Training
Samples

(the, quick)
(the, brown)

(quick, the)
(quick, brown)
(quick, fox)

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

wework

word2vec vs Node2vec

word2vec:

Given a corpus, maximize P(next word | context words)

Source Text

quick

brown

The

fox jumps

brown

fox|jumps

The

quick- fox|jumps

over the

over the

over the

The

quick

brown - Jjumps

over|the

lazy dog.

lazy dog.

lazy dog.

lazy dog.

Training
Samples

(the, quick)
(the, brown)

(quick, the)
(quick, brown)
(quick, fox)

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

CBOW

wework

word2vec vs Node2vec

word2vec:

Given a corpus, maximize P(next word | context words)

Source Text

quick

brown

The

fox jumps

brown

fox|jumps

The

quick- fox|jumps

over the

over the

over the

The

quick

brown - Jjumps

over|the

lazy dog.

lazy dog.

lazy dog.

lazy dog.

Training
Samples

(the, quick)
(the, brown)

(quick, the)
(quick, brown)
(quick, fox)

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

CBOW
Skip-gram

wework

word2vec vs Node2vec

node2vec:

For node2vec, we want to maximize the log-probability of
observing a network neighborhood N (u) for a node u
conditioned on its feature representation

max Y log Pr(Ns(u)|f(u)).

! uevV

wework

word2vec vs Node2vec

node2vec:

In order to make this problem tractable, we assume:
- Conditional independence of neighborhood nodes

Pr(Ns)|f(w) =[] Pr(nif(w).

niENg(u)

wework

word2vec vs Node2vec

node2vec:

In order to make this problem tractable, we assume:
- Symmetry in feature space (a source node and neighborhood node

have a symmetric effect over each other)
- Conditional likelihood of every node pair written as a softmax function

i’ 2)) — exp(f(’ni) ’ f(u))
Pr(n;|f(u)) ZUEV exp(f(v) - f(u))

wework

word2vec vs Node2vec

node2vec:

With these two assumptions, original function simplifies to:

max Z log Pr(Ns(u)|f(u)).

! ueV l

max [—logZu—I- > f(n)- f(u)].

f
ucV n;ENg(u)

wework

word2vec vs Node2vec

node2vec:

If we know the representation for node v (the gray node), can we
predict its neighborhood (x1, x2, x3)?

wework

node2vec Algorithm

Problem:

There’s no obvious way to identify separate neighborhoods
in a graph like you can identify sentences in a document

wework

node2vec Algorithm

Solution:

Simulate many random walks around each node to define
possible “neighborhoods” around the node

wework

node2vec Algorithm

Each walk is a directed subgraph analogous to a “sentence”
In a text corpus

Graph Input data Embeddings

sampling
strategy

skip-gram

model

U S
vy 1
Vol ol

(> > >

Node2vec embedding process

\ 4

wework

node2vec Algorithm

From the graph on the left we can create multiple potential
neighborhoods and use them as “training data”

Graph Input data Embeddings

sampling
strategy

skip-gram

model

U S
vy 1
Vol ol

\ 4

(> > >

Node2vec embedding process

wework

node2vec Algorithm

In order to efficiently explore many possible neighborhoods of node u, the
random walk algorithm takes two parameters P and Q

Determines how “locally” or “globally” the walk explores the neighborhood of
node u

High P = less likely to revisit an already-visited node
High Q = more likely to visit close-by nodes

wework

node2vec Algorithm

Combinations of P, Q can emulate different sampling strategies:

Breadth First Search: Neighborhood is restricted to immediate neighbors of
the node u

Depth First Search: Neighborhood consists of nodes sampled at increasing
distances from u

wework

node2vec

The node2vec algorithm can be decomposed into 3 steps:
a) Precompute transition probabilities for the random walk simulation

b) For every node, simulate r random walks of fixed length /
c) Feed random walks into a word2vec model and solve with SGD

wework

node2vec

Once we train a model and find embeddings for each node we can do:
- Clustering using node embeddings

- Node classification

- Community Detection

wework

Clustering off node2vec

For each WeWork location we can run node2vec on its social graph...

wework

Clustering off node2vec

Using the data in the Member Knowledge Graph...

Laundry
The color blue

The color blue

wework

Clustering off node2vec

Map every member to a vector...

array([0.4538611 , 0.27743287, 0.25933201, 0.24732495, 0.70126288,
0.30814868, 0.16309851, 0.979808 , 0.1905782 , 0.23823703])

array([0.37425164, 0.3933045 , 0.55216442, 0.09399904, 0.00195709,
0.18054741, 0.91324634, 0.96009897, 0.37971078, 0.98799726])

array([0.21394969, 0.96883666, 0.44219008, 0.38977323, 0.1161356 ,
0.30654193, 0.34719876, 0.3183716 , 0.73832435, 0.12602231])

wework

Clustering off node2vec

Then retrieve the most similar members for each member...

wework

Clustering off node2vec

And use this to power different kinds of member recommendations

wework

Clustering off node2vec

And use this to power different kinds of member recommendations

-General member recommendations during onboarding

wework

Clustering off node2vec

And use this to power different kinds of member recommendations
-General member recommendations during onboarding

-Facilitated introductions between WeWork Labs members

wework

Thanks for Listening!

wework

