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This Talk

* Linkedin has a data driven culture

» We measure and monitor everything

S about Metrics * Metrics and how we compute and

serve them is at the heart of our data
science platform as a service




Once Upon a Time
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metrics




Which was bad
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Challenge 1: Data Consistency




Challenge 2: Engineering Productivity & Operations
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Challenges: Engineering Productivity (Contd..)

Build Insights

» Speed can slow down due to multiple
teams are involved

Data
Scientists

» Data scientists productivity declines
as they need to be dependent on
other teams to build necessary

INSIgNts

Data

Engineering Infrastroctore

Engineering

Build a“f’( o;?emte Boild ¢ scale data
data pipelines -
infrastroctore



Challenges: Operations (Contd..)
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Our Approach

Solution

“Provide

rusted reposi

and builc

a self-serve p

ory of metrics,

atform for

sustainable lite cycle of metrics”



Wish List

e Same and consistent metrics/ insights in all data

, applications

\/\/ h at Cl | Cl VWV E e Same metadata everywhere

e Single definition of entity dimensions

\Wan t7 e Single definition of event dimensions

e No duplication of metrics

e Allow data scientists to focus on their core skills/
job

@ |ncrease engineering productivity, simplity and
optimize operations




Solution

Metrics Platform “Plattorm that builds, manages and

scales all metrics across all

as Service applications at LinkedIn”
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Metrics Platform as a Service

Data Scientists @
" /A

Metrics Platform as a Service

-

Metrics

Data scientists build metrics
ogic (config + code) into the

central platform

Platform automatically

generates necessary data
pipelines and centrally
operate

Plat

‘orm computes anc

oub

ishes metrics results into

dashboard/ downstream
appPs



Metrics Platform as a Service

metric-name: daily-unique
input-dataset: web-tracking, mobile-tracking

metric-formula: DISTINCT_ COUNT (members)
frequency: daily <::::> <::::> (::::::) <:::::>
dimensions: members, country, platform

logic: daily-unique-users.sql mobile-tracking web-tracking  dim-member  dim-country
Data Scientists N S
outo- daily-oninig-vsers.sal
‘ . generates \ \
Metrics Platform as a Service :

l Platform-aggregation-logic |’ I

‘ Hive-registration l

metadata-registmtiov'
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Metrics



Scaling Metrics Platrorm

Our journey in evolving our platforms as a de-facto metrics platform for the entire company




Scaling Governance
IS Not Easy



metric-defs ACL's

Single source/repository for all ACL Management by Subject Matter
metrics Expertise
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Tools for data lineage
Search & Discovery experience for

your datasets and metrics



Lessons along the way

Implementing default
use cases should be
simple, but more
complex use cases
DOSSIDle

1.Added support for various

compute engines:

Spark, Spar

< SOQL,

°lg, Hive,

Presto

2. Templatize common patterns

such as cubing, multi

datacenter availability,

Dercentile support
3.Build downstream integrations
4. Explore plug-in architecture to

avoid making platform team a

bottleneck



Lessons along the way

Simplitied Compliance

» Platform managed compliance
Leverage economies of - Data Retention and cleanup
scale of being the central » Data Quality Checks
platform

Selt-Serve & Operational Tooling
* Flow Management

» Backfills Portal

» Self-heal




Lessons along the way

Batch -> Realtime Convergence

Innovations are a ot » Automatic Hadoop MR -> Kafka/
more impactrul with Samza convergence via apache
blatforms calcite

(Rl

kafka/ samza

Hadoop Real TimeMetrics

Offline Metrics



Metrics Platform as Service Ecosystem

Invest in scaling

Prodoct '
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Leverage economies
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